
Theory of Operation

Below is the Theory of Operation for interfacing with the device using the API defined further below. C#
sample code can be made available.

NOTE: Firmware version 3.1.4.7 or later is recommended for the best API response times.

- The device supports two modes of operation, ECHO OFF and ECHO ON. The ECHO OFF mode is the
default mode on power up and is required for interacting with the device as indicated below. If the
unit was set to ECHO ON mode (echoon) after it was powered up, it must be returned to ECHO OFF
mode (echooff) before sending any commands programmatically.

- The device responds to a number of commands (together known as the command‐line API)
delivered via the USB port (most commonly) or UDP (for WiFi connectivity).

- The USB port is configured on the device as a USB Serial Port. As a result, interfacing can be done
with any standard terminal programs (hyperterminal, puTTY, MAC terminal window, etc), or direct
serial port programming via C, C#, LabView, MatLab, etc.

o Serial port settings are:
 Baud Rate: 115200
 Data Bits: 8
 Parity bits = None
 Stop bits = 1
 Flow Control = None

- The device behaves as follows and in sequence:
a. Perform analog/digital conversion and mathematical functions as part of optical level

detection
i. Buffer up to 4 characters of any incoming commands while performing the

processing above
b. Check for any characters in the buffer referenced above to indicate an incoming command

and process any commands as required. Important programming notes:
i. It can take up to 50ms for the system to complete complex analog/digital tasks and

process the remainder of the command that was not buffered.
ii. The device determines the completion of the command by detecting a “\r”

character, i.e. ASCII code 13 decimal.
c. Start all over from the top at (a)….

- As a result of the above device behavior, the recommended method to program each device is to:
o Always append commands with \r to indicate the command completion.

 Do NOT send a “\r\n” command as the “\n” will be interpreted as the start of the
next command, typically resulting in a delay followed by a “‐999\r\n” response
indicating an unknown command. Some programming languages have API’s that
automatically attach a termination character. For example C#
SerialPort.WriteLine(…) will append the “\n” by default. In this case use
SerialPort.Write(…) with the “\r” embedded in the string passed to the API.

 Note that “\r” is not two characters, as would be typed at a terminal or sent as part
of a string by some programming API’s. It represents the ASCII code 13 or a carriage
return.

o Send the first character of the command, for example the “g” in “getcurrent\r”.

 It is good practice to “drain” the serial line input prior to sending any commands.
This involves simply reading any characters that might be stuck in the serial input
buffer prior to sending a new command.

o Pause 50ms
 For firmware versions 3.1.4.7 or greater, this can be relaxed to 10ms.

o Send the remainder of the command, i.e. “etcurrent\r”.
 IMPORTANT: Apple/MAC and some Unix‐based systems have shown a need for a

1ms inter‐character delay.
o Immediately start sensing the response from the device.

 The device will always send a response to acknowledge the status of the command
completion as well as to return values for “get” commands.

- It is important to always read the response back, even if there is no interest
in the response, to empty the serial input buffer.

 The response will always be terminated with a “\r\n” (13 decimal, 10 decimal)
sequence. This can be used to sense the end of the response and start sending the
next command.

 Be careful not to expect an immediate response from the device. For instance, after
sending the remainder of the command, i.e. “etcurrent\r”, do not immediately
check the receive buffer and give‐up if data is not sensed. It can take over 1 ms for
even the fastest commands to return. It is better (more robust) to (a) send the
remainder of the command, (b) continue looking for and processing a response until
“\r\n” is sensed, and (c) use a timeout to detect when a response has not returned
within some time‐out period.

- Regarding time‐outs for command responses, “get” commands will typically
respond within 100ms. “set” commands that store their configuration in
flash memory can take up to 5 seconds to respond. Other special
commands like “setuserdark” and “captureflash” can take longer to
respond.

 There are certain commands that will return multiple lines, i.e. multiple “\r\n”
terminations in response to a single command.

 For commands that return a large amount of data, such as getlogdata, ensure that
the receiving buffer is large enough to hold all the data.

- Each device is single threaded, meaning that commands and responses need to be processed in
sequence. A 2nd command cannot, for example, be initiated before the 1st command’s response is
fully processed. As a result, if a multi‐threaded application is accessing the device, a programmatic
lock must be placed around device command/response sequences to make sure multiple threads do
not attempt to access the device at the same time.

o If multiple devices are being monitored, a single lock can be used for access to all devices.
This is simpler from a coding perspective, but it is not as efficient as it does not allow
multiple devices to operate in parallel. For the best performance it is recommended that a
per‐device lock be established. This allows all devices to be accessed in parallel.

o As a further performance benefit when monitoring multiple devices, the delay after the first
character can be performed in parallel across all devices. For example, if sending
“getcurrent\r” to 5 devices, one would:

 Send “g” to all 5 devices
 Wait 50ms
 Send “etcurrent\r” to all devices

 Process the reply from all devices
- The replies can be processed in “round‐robin” fashion, allowing commands

that return a large amount of data, such as getlogdata, to be processed
faster.

- Many of the more popular command have had 2‐character short‐cuts added over time. This allows
rapid, repeated access to sensor data because the command fits in the 4‐character buffer and does
not require a delay after the first character of the command. These commands, and short‐cuts, are
as follows:

o gc = getcurrent, introduced in FW version 3.0.5.4
o gi = getirradiance, introduced in FW version 3.0.5.4
o gv = getvoltage, introduced in FW version 3.0.5.4
o gt = gettrans, introduced in FW version 3.0.9.4
o go = getod, introduced in FW version 3.0.9.4

